Electron Microscopic Studies on the Indirect Flight Muscles Ofdrosophilamelanogaster
نویسنده
چکیده
The myofibrils in Drosophila have thick and thin types of myofilaments arranged in the hexagonal pattern described for Calliphora by Huxley and Hanson (15). The thick filaments, along most of their length in the A band, seem to be binary in structure, consisting of a dense cortex and a lighter medulla. In the H zone, however, they show more uniform density; lateral projections (bridges) also appear to be absent in this region. The M band has a varying number of granules (probably of glycogen) distributed between the myofilaments. The myofilaments on reaching the Z region appear to change their hexagonal arrangement and become connected to one another by Z filaments. The regular arrangement of the filaments found in most regions of the fibrils is not seen in the terminal sarcomeres of some flight muscles; the two types of filaments appear to be intermingled in an irregular pattern in these parts of the fibrils. The attachment of myofibrils to the cuticle through the epidermal cells is described.
منابع مشابه
Development of the indirect flight muscles of Drosophila.
We have followed the pupal development of the indirect flight muscles (IFMs) of Drosophila melanogaster. At the onset of metamorphosis larval muscles start to histolyze, with the exception of a specific set of thoracic muscles. Myoblasts surround these persisting larval muscles and begin the formation of one group of adult indirect flight muscles, the dorsal longitudinal muscles. We show that t...
متن کاملTransformation of Drosophila melanogaster with the wild-type myosin heavy-chain gene: rescue of mutant phenotypes and analysis of defects caused by overexpression
We have transformed Drosophila melanogaster with a genomic construct containing the entire wild-type myosin heavy-chain gene, Mhc, together with approximately 9 kb of flanking DNA on each side. Three independent lines stably express myosin heavy-chain protein (MHC) at approximately wild-type levels. The MHC produced is functional since it rescues the mutant phenotypes of a number of different M...
متن کاملThe development of indirect flight muscle innervation in Drosophila melanogaster
We have examined the development of innervation to the indirect flight muscles of Drosophila. During metamorphosis, the larval intersegmental nerve of the mesothorax is remodelled to innervate the dorsal longitudinal muscles and two of the dorsoventral muscles. Another modified larval nerve innervates the remaining dorsoventral muscle. The dorsal longitudinal muscles develop using modified larv...
متن کاملERECT WING, the Drosophila member of a family of DNA binding proteins is required in imaginal myoblasts for flight muscle development.
The erect wing locus of the fruit fly Drosophila melanogaster encodes a protein, EWG, that shares extensive homology with the P3A2 DNA binding protein of sea urchin and a recently identified mammalian transcription factor. Loss-of-function erect wing alleles result in embryonic lethality. Viable alleles of erect wing cause severe abnormalities of the indirect flight muscles. We have analyzed th...
متن کاملIn vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis.
We have used high-speed video microscopy to measure in vivo length oscillations of the indirect flight muscles of the fruit fly Drosophila virilis during tethered flight. The changes in muscle strain were measured by tracking the deformation of the thoracic exoskeleton at the origin and insertion of both the dorsal longitudinal (DLM) and the dorsal ventral (DVM) muscles. The mean peak-to-peak s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 17 شماره
صفحات -
تاریخ انتشار 1963